2025-02-07 13:47:37,631 | WARNING | Install mpi4py if you want to use the distributed version.
2025-02-07 13:47:37,633 | INFO | save/test_ts already exists. Deleting it.
2025-02-07 13:47:37,650 | INFO | The whole population has been created (size = 20), 20 have been randomy initialized.
Idx: 0, on validation set: MAPE = 0.25278031826019287, RMSE = 171.59567260742188
2025-02-07 13:47:38,707 | INFO | Best found! 0.17346756059619525 < inf
Idx: 1, on validation set: MAPE = 0.14085960388183594, RMSE = 87.64507293701172
2025-02-07 13:47:40,472 | INFO | Best found! 0.0452543810118765 < 0.17346756059619525
Idx: 2, on validation set: MAPE = 0.8092232346534729, RMSE = 441.6387939453125
Idx: 3, on validation set: MAPE = 0.7823165655136108, RMSE = 417.098876953125
Idx: 4, on validation set: MAPE = 0.39875057339668274, RMSE = 204.48941040039062
Idx: 5, on validation set: MAPE = 0.14847682416439056, RMSE = 115.73798370361328
Idx: 6, on validation set: MAPE = 0.13891682028770447, RMSE = 101.47113800048828
Idx: 7, on validation set: MAPE = 0.4745907485485077, RMSE = 268.2114562988281
Idx: 8, on validation set: MAPE = 12.157652854919434, RMSE = 6167.1279296875
Idx: 9, on validation set: MAPE = 0.403279572725296, RMSE = 207.37094116210938
Idx: 10, on validation set: MAPE = 0.4889073371887207, RMSE = 285.5888671875
Idx: 11, on validation set: MAPE = 0.69692462682724, RMSE = 412.52056884765625
Idx: 12, on validation set: MAPE = 0.17014995217323303, RMSE = 134.8133544921875
Idx: 13, on validation set: MAPE = 0.1305270791053772, RMSE = 88.1025619506836
Idx: 14, on validation set: MAPE = 0.13090716302394867, RMSE = 91.27886962890625
Idx: 15, on validation set: MAPE = 0.1183539405465126, RMSE = 94.23975372314453
Idx: 16, on validation set: MAPE = 0.13657067716121674, RMSE = 110.94203186035156
Idx: 17, on validation set: MAPE = 0.23222047090530396, RMSE = 162.815185546875
Idx: 18, on validation set: MAPE = 0.2873539328575134, RMSE = 190.031982421875
Idx: 19, on validation set: MAPE = 0.12392502278089523, RMSE = 76.68273162841797
2025-02-07 13:48:49,588 | INFO | Best found! 0.034641819290713596 < 0.0452543810118765
2025-02-07 13:48:49,593 | INFO | All models have been at least evaluated once, t = 20 < 100.
2025-02-07 13:48:49,593 | INFO | After initialisation, it remains 80 iterations.
2025-02-07 13:48:49,594 | INFO | With p = 0.2 = 1 / 5, training 19 instead
Idx: 19, on validation set: MAPE = 0.11574778705835342, RMSE = 92.8625717163086
2025-02-07 13:48:51,185 | INFO | With p = 0.2 = 1 / 5, training 1 instead
Idx: 1, on validation set: MAPE = 0.5122929215431213, RMSE = 296.73211669921875
2025-02-07 13:48:52,937 | INFO | With p = 0.2 = 1 / 5, training 13 instead
Idx: 13, on validation set: MAPE = 0.10445880889892578, RMSE = 80.71048736572266
2025-02-07 13:48:54,506 | INFO | With p = 0.2 = 1 / 5, training 14 instead
Idx: 14, on validation set: MAPE = 0.11222360283136368, RMSE = 82.90767669677734
2025-02-07 13:48:55,744 | INFO | With p = 0.2 = 1 / 5, training 15 instead
Idx: 15, on validation set: MAPE = 0.11740612983703613, RMSE = 91.13170623779297
2025-02-07 13:48:57,122 | INFO | With p = 0.2 = 1 / 5, training 6 instead
Idx: 6, on validation set: MAPE = 0.11892752349376678, RMSE = 87.65919494628906
2025-02-07 13:48:58,602 | INFO | With p = 0.4 = 2 / 5, training 13 instead
Idx: 13, on validation set: MAPE = 0.10612066090106964, RMSE = 88.17684173583984
2025-02-07 13:49:00,117 | INFO | With p = 0.4 = 2 / 5, training 19 instead
Idx: 19, on validation set: MAPE = 0.6006303429603577, RMSE = 330.9823913574219
2025-02-07 13:49:01,659 | INFO | With p = 0.2 = 1 / 5, training 16 instead
Idx: 16, on validation set: MAPE = 0.10128592699766159, RMSE = 81.72245025634766
2025-02-07 13:49:02,965 | INFO | With p = 0.4 = 2 / 5, training 14 instead
Idx: 14, on validation set: MAPE = 0.09792458266019821, RMSE = 74.09211730957031
2025-02-07 13:49:04,231 | INFO | Best found! 0.03234071052962794 < 0.034641819290713596
2025-02-07 13:49:04,234 | INFO | With p = 0.2 = 1 / 5, training 5 instead
Idx: 5, on validation set: MAPE = 0.18034058809280396, RMSE = 133.2898712158203
2025-02-07 13:49:05,355 | INFO | With p = 0.4 = 2 / 5, mutating 15 to 20
Idx: 20, on validation set: MAPE = 0.11646398901939392, RMSE = 100.49867248535156
2025-02-07 13:49:07,077 | INFO | With p = 0.2 = 1 / 5, mutating 20 to 21
Idx: 21, on validation set: MAPE = 0.12002182751893997, RMSE = 96.51895141601562
2025-02-07 13:49:08,797 | INFO | With p = 0.2 = 1 / 5, training 21 instead
Idx: 21, on validation set: MAPE = 0.10674992203712463, RMSE = 77.52178955078125
2025-02-07 13:49:10,579 | INFO | With p = 0.4 = 2 / 5, training 21 instead
Idx: 21, on validation set: MAPE = 0.10475777834653854, RMSE = 72.94390869140625
2025-02-07 13:49:12,218 | INFO | Best found! 0.03134610478435785 < 0.03234071052962794
2025-02-07 13:49:12,221 | INFO | With p = 0.4 = 2 / 5, mutating 6 to 22
Idx: 22, on validation set: MAPE = 0.10353737324476242, RMSE = 77.01615905761719
2025-02-07 13:49:13,723 | INFO | With p = 0.2 = 1 / 5, training 22 instead
Idx: 22, on validation set: MAPE = 0.09536831825971603, RMSE = 69.59992980957031
2025-02-07 13:49:15,345 | INFO | Best found! 0.02853797586882675 < 0.03134610478435785
2025-02-07 13:49:15,349 | INFO | With p = 0.4 = 2 / 5, mutating 22 to 23
Idx: 23, on validation set: MAPE = 0.13698846101760864, RMSE = 112.22069549560547
2025-02-07 13:49:16,752 | INFO | With p = 0.4 = 2 / 5, training 22 instead
Idx: 22, on validation set: MAPE = 0.09047950059175491, RMSE = 64.21504974365234
2025-02-07 13:49:18,378 | INFO | Best found! 0.024292889982763022 < 0.02853797586882675
2025-02-07 13:49:18,388 | INFO | With p = 0.2 = 1 / 5, training 23 instead
Idx: 23, on validation set: MAPE = 0.1122182086110115, RMSE = 88.15772247314453
2025-02-07 13:49:19,954 | INFO | With p = 0.6 = 3 / 5, training 22 instead
Idx: 22, on validation set: MAPE = 0.08819364756345749, RMSE = 61.659751892089844
2025-02-07 13:49:21,450 | INFO | Best found! 0.022397991680422405 < 0.024292889982763022
2025-02-07 13:49:21,455 | INFO | With p = 0.6 = 3 / 5, mutating 21 to 24
Idx: 24, on validation set: MAPE = 0.1258588433265686, RMSE = 73.9375
2025-02-07 13:49:23,439 | INFO | With p = 0.2 = 1 / 5, training 24 instead
Idx: 24, on validation set: MAPE = 0.09452932327985764, RMSE = 69.98967742919922
2025-02-07 13:49:25,437 | INFO | With p = 0.4 = 2 / 5, mutating 24 to 25
Idx: 25, on validation set: MAPE = 0.10315032303333282, RMSE = 67.85924530029297
2025-02-07 13:49:27,936 | INFO | With p = 0.2 = 1 / 5, training 25 instead
Idx: 25, on validation set: MAPE = 0.11185655742883682, RMSE = 71.13701629638672
2025-02-07 13:49:29,767 | INFO | With p = 0.4 = 2 / 5, mutating 25 to 26
Idx: 26, on validation set: MAPE = 0.11666081100702286, RMSE = 92.63421630859375
2025-02-07 13:49:31,265 | INFO | With p = 0.2 = 1 / 5, training 26 instead
Idx: 26, on validation set: MAPE = 0.11963345855474472, RMSE = 88.41085815429688
2025-02-07 13:49:32,525 | INFO | With p = 0.4 = 2 / 5, training 25 instead
Idx: 25, on validation set: MAPE = 0.11579463630914688, RMSE = 71.45938873291016
2025-02-07 13:49:34,132 | INFO | With p = 0.4 = 2 / 5, mutating 24 to 27
Idx: 27, on validation set: MAPE = 0.16406217217445374, RMSE = 126.80860137939453
2025-02-07 13:49:35,819 | INFO | With p = 0.4 = 2 / 5, mutating 26 to 28
Idx: 28, on validation set: MAPE = 0.11559046059846878, RMSE = 96.18035888671875
2025-02-07 13:49:37,178 | INFO | With p = 0.2 = 1 / 5, mutating 28 to 29
Idx: 29, on validation set: MAPE = 0.11902876198291779, RMSE = 88.86155700683594
2025-02-07 13:49:38,583 | INFO | With p = 0.2 = 1 / 5, training 29 instead
Idx: 29, on validation set: MAPE = 0.11736097931861877, RMSE = 91.23209381103516
2025-02-07 13:49:39,864 | INFO | With p = 0.4 = 2 / 5, training 29 instead
Idx: 29, on validation set: MAPE = 0.1194150373339653, RMSE = 88.5447998046875
2025-02-07 13:49:41,102 | INFO | With p = 0.6 = 3 / 5, training 25 instead
Idx: 25, on validation set: MAPE = 0.10577210783958435, RMSE = 68.99132537841797
2025-02-07 13:49:42,755 | INFO | With p = 0.4 = 2 / 5, mutating 24 to 30
Idx: 30, on validation set: MAPE = 0.10191940516233444, RMSE = 67.65409088134766
2025-02-07 13:49:44,437 | INFO | With p = 0.2 = 1 / 5, training 30 instead
Idx: 30, on validation set: MAPE = 0.11618217825889587, RMSE = 72.78789520263672
2025-02-07 13:49:46,247 | INFO | With p = 0.4 = 2 / 5, training 30 instead
Idx: 30, on validation set: MAPE = 0.11508996784687042, RMSE = 71.25272369384766
2025-02-07 13:49:47,840 | INFO | With p = 0.6 = 3 / 5, mutating 30 to 31
Idx: 31, on validation set: MAPE = 0.09083370119333267, RMSE = 69.9476318359375
2025-02-07 13:49:49,415 | INFO | With p = 0.2 = 1 / 5, training 31 instead
Idx: 31, on validation set: MAPE = 0.09752893447875977, RMSE = 67.94530487060547
2025-02-07 13:49:51,119 | INFO | With p = 0.4 = 2 / 5, training 31 instead
Idx: 31, on validation set: MAPE = 0.09218338131904602, RMSE = 72.2193832397461
2025-02-07 13:49:52,750 | INFO | With p = 0.6 = 3 / 5, training 31 instead
Idx: 31, on validation set: MAPE = 0.09772363305091858, RMSE = 67.41448211669922
2025-02-07 13:49:54,676 | INFO | With p = 0.8 = 4 / 5, training 31 instead
Idx: 31, on validation set: MAPE = 0.10580570250749588, RMSE = 67.8490219116211
2025-02-07 13:49:56,436 | INFO | With p = 0.6 = 3 / 5, training 30 instead
Idx: 30, on validation set: MAPE = 0.09115266799926758, RMSE = 70.34504699707031
2025-02-07 13:49:58,129 | INFO | With p = 0.8 = 4 / 5, mutating 22 to 32
Idx: 32, on validation set: MAPE = 0.08627993613481522, RMSE = 60.239261627197266
2025-02-07 13:49:59,541 | INFO | Best found! 0.021377891398680567 < 0.022397991680422405
2025-02-07 13:49:59,545 | INFO | With p = 0.2 = 1 / 5, training 32 instead
Idx: 32, on validation set: MAPE = 0.08562853932380676, RMSE = 59.051856994628906
2025-02-07 13:50:01,030 | INFO | Best found! 0.020543413724629807 < 0.021377891398680567
2025-02-07 13:50:01,033 | INFO | With p = 0.4 = 2 / 5, training 32 instead
Idx: 32, on validation set: MAPE = 0.08622968941926956, RMSE = 58.215091705322266
2025-02-07 13:50:02,422 | INFO | Best found! 0.019965347896541887 < 0.020543413724629807
2025-02-07 13:50:02,425 | INFO | With p = 0.6 = 3 / 5, training 32 instead
Idx: 32, on validation set: MAPE = 0.08825863152742386, RMSE = 57.72849655151367
2025-02-07 13:50:03,833 | INFO | Best found! 0.019632975156293305 < 0.019965347896541887
2025-02-07 13:50:03,838 | INFO | With p = 0.8 = 4 / 5, mutating 32 to 33
Idx: 33, on validation set: MAPE = 0.16718131303787231, RMSE = 131.91839599609375
2025-02-07 13:50:05,091 | INFO | With p = 0.8 = 4 / 5, training 32 instead
Idx: 32, on validation set: MAPE = 0.0928325355052948, RMSE = 58.10025405883789
2025-02-07 13:50:06,630 | INFO | With p = 1.0 = 5 / 5, mutating 32 to 34
Idx: 34, on validation set: MAPE = 0.08768563717603683, RMSE = 67.07479095458984
2025-02-07 13:50:08,282 | INFO | With p = 0.2 = 1 / 5, training 34 instead
Idx: 34, on validation set: MAPE = 0.10171080380678177, RMSE = 79.79564666748047
2025-02-07 13:50:09,730 | INFO | With p = 0.4 = 2 / 5, training 34 instead
Idx: 34, on validation set: MAPE = 0.09472493827342987, RMSE = 67.55670166015625
2025-02-07 13:50:11,246 | INFO | With p = 0.6 = 3 / 5, mutating 34 to 35
Idx: 35, on validation set: MAPE = 0.09291192889213562, RMSE = 66.5353012084961
2025-02-07 13:50:12,733 | INFO | With p = 0.2 = 1 / 5, training 35 instead
Idx: 35, on validation set: MAPE = 0.09348049014806747, RMSE = 68.2832260131836
2025-02-07 13:50:14,221 | INFO | With p = 0.4 = 2 / 5, training 35 instead
Idx: 35, on validation set: MAPE = 0.07845062762498856, RMSE = 56.833675384521484
2025-02-07 13:50:15,631 | INFO | Best found! 0.019029044557899253 < 0.019632975156293305
2025-02-07 13:50:15,635 | INFO | With p = 0.6 = 3 / 5, training 35 instead
Idx: 35, on validation set: MAPE = 0.08435732126235962, RMSE = 58.76644515991211
2025-02-07 13:50:17,052 | INFO | With p = 0.8 = 4 / 5, mutating 35 to 36
Idx: 36, on validation set: MAPE = 0.07325568795204163, RMSE = 50.333255767822266
2025-02-07 13:50:18,583 | INFO | Best found! 0.01492504175440052 < 0.019029044557899253
2025-02-07 13:50:18,587 | INFO | With p = 0.2 = 1 / 5, training 36 instead
Idx: 36, on validation set: MAPE = 0.07392118126153946, RMSE = 52.059139251708984
2025-02-07 13:50:20,137 | INFO | With p = 0.4 = 2 / 5, mutating 36 to 37
Idx: 37, on validation set: MAPE = 0.06664402782917023, RMSE = 47.97541427612305
2025-02-07 13:50:21,570 | INFO | Best found! 0.013559476533972966 < 0.01492504175440052
2025-02-07 13:50:21,574 | INFO | With p = 0.2 = 1 / 5, training 37 instead
Idx: 37, on validation set: MAPE = 0.05864858627319336, RMSE = 42.18466567993164
2025-02-07 13:50:23,083 | INFO | Best found! 0.010483702681982137 < 0.013559476533972966
2025-02-07 13:50:23,088 | INFO | With p = 0.4 = 2 / 5, training 37 instead
Idx: 37, on validation set: MAPE = 0.05765188857913017, RMSE = 41.282501220703125
2025-02-07 13:50:24,530 | INFO | Best found! 0.010040088404418218 < 0.010483702681982137
2025-02-07 13:50:24,534 | INFO | With p = 0.6 = 3 / 5, training 37 instead
Idx: 37, on validation set: MAPE = 0.05003468692302704, RMSE = 34.00397491455078
2025-02-07 13:50:26,005 | INFO | Best found! 0.006811846918543035 < 0.010040088404418218
2025-02-07 13:50:26,009 | INFO | With p = 0.4 = 2 / 5, mutating 36 to 38
Idx: 38, on validation set: MAPE = 0.08223886787891388, RMSE = 57.334014892578125
2025-02-07 13:50:27,696 | INFO | With p = 0.2 = 1 / 5, mutating 38 to 39
Idx: 39, on validation set: MAPE = 0.06400180608034134, RMSE = 47.055946350097656
2025-02-07 13:50:29,332 | INFO | With p = 0.2 = 1 / 5, training 39 instead
Idx: 39, on validation set: MAPE = 0.06279464066028595, RMSE = 44.33384704589844
2025-02-07 13:50:30,912 | INFO | With p = 0.4 = 2 / 5, training 39 instead
Idx: 39, on validation set: MAPE = 0.05884108692407608, RMSE = 42.20945358276367
2025-02-07 13:50:32,415 | INFO | With p = 0.2 = 1 / 5, training 38 instead
Idx: 38, on validation set: MAPE = 0.06877875328063965, RMSE = 49.80124282836914
2025-02-07 13:50:33,796 | INFO | With p = 0.6 = 3 / 5, training 39 instead
Idx: 39, on validation set: MAPE = 0.05325986072421074, RMSE = 36.90644073486328
2025-02-07 13:50:35,222 | INFO | With p = 0.4 = 2 / 5, mutating 38 to 40
Idx: 40, on validation set: MAPE = 0.064189113676548, RMSE = 45.805625915527344
2025-02-07 13:50:36,889 | INFO | With p = 0.2 = 1 / 5, training 40 instead
Idx: 40, on validation set: MAPE = 0.05684179067611694, RMSE = 38.86223220825195
2025-02-07 13:50:38,314 | INFO | With p = 0.4 = 2 / 5, training 40 instead
Idx: 40, on validation set: MAPE = 0.05338210240006447, RMSE = 37.53934097290039
2025-02-07 13:50:39,804 | INFO | With p = 0.6 = 3 / 5, training 40 instead
Idx: 40, on validation set: MAPE = 0.05127706751227379, RMSE = 35.88534927368164
2025-02-07 13:50:41,374 | INFO | With p = 0.8 = 4 / 5, training 40 instead
Idx: 40, on validation set: MAPE = 0.054205749183893204, RMSE = 35.92194747924805
2025-02-07 13:50:42,960 | INFO | With p = 0.8 = 4 / 5, mutating 37 to 41
Idx: 41, on validation set: MAPE = 0.050630927085876465, RMSE = 32.9295539855957
2025-02-07 13:50:44,570 | INFO | Best found! 0.006388180294550239 < 0.006811846918543035
2025-02-07 13:50:44,576 | INFO | With p = 0.2 = 1 / 5, training 41 instead
Idx: 41, on validation set: MAPE = 0.05351459980010986, RMSE = 33.1446418762207
2025-02-07 13:50:46,227 | INFO | With p = 0.4 = 2 / 5, mutating 41 to 42
Idx: 42, on validation set: MAPE = 0.05488821491599083, RMSE = 34.865421295166016
2025-02-07 13:50:47,713 | INFO | With p = 0.2 = 1 / 5, mutating 42 to 43
Idx: 43, on validation set: MAPE = 0.054597821086645126, RMSE = 35.39425277709961
2025-02-07 13:50:49,370 | INFO | With p = 0.2 = 1 / 5, training 43 instead
Idx: 43, on validation set: MAPE = 0.05455347150564194, RMSE = 36.06391143798828
2025-02-07 13:50:50,841 | INFO | With p = 0.2 = 1 / 5, training 42 instead
Idx: 42, on validation set: MAPE = 0.05818048492074013, RMSE = 36.88071823120117
2025-02-07 13:50:52,545 | INFO | With p = 0.4 = 2 / 5, training 43 instead
Idx: 43, on validation set: MAPE = 0.05734092369675636, RMSE = 38.490379333496094
2025-02-07 13:50:54,123 | INFO | Search algorithm is done. Min Loss = 0.006388180294550239